Parametric Hidden Markov Models for Gesture Recognition

نویسندگان

  • Andrew D. Wilson
  • Aaron F. Bobick
چکیده

ÐA new method for the representation, recognition, and interpretation of parameterized gesture is presented. By parameterized gesture we mean gestures that exhibit a systematic spatial variation; one example is a point gesture where the relevant parameter is the two-dimensional direction. Our approach is to extend the standard hidden Markov model method of gesture recognition by including a global parametric variation in the output probabilities of the HMM states. Using a linear model of dependence, we formulate an expectation-maximization (EM) method for training the parametric HMM. During testing, a similar EM algorithm simultaneously maximizes the output likelihood of the PHMM for the given sequence and estimates the quantifying parameters. Using visually derived and directly measured three-dimensional hand position measurements as input, we present results that demonstrate the recognition superiority of the PHMM over standard HMM techniques, as well as greater robustness in parameter estimation with respect to noise in the input features. Last, we extend the PHMM to handle arbitrary smooth (nonlinear) dependencies. The nonlinear formulation requires the use of a generalized expectation-maximization (GEM) algorithm for both training and the simultaneous recognition of the gesture and estimation of the value of the parameter. We present results on a pointing gesture, where the nonlinear approach permits the natural spherical coordinate parameterization of pointing direction. Index TermsÐGesture recognition, hidden Markov models, expectation-maximization algorithm, time-series modeling, computer vision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Parametric Hidden Markov Models

In previous work [4], we extended the hidden Markov model (HMM) framework to incorporate a global parametric variation in the output probabilities of the states of the HMM. Development of the parametric HMM was motivated by the task of simultaneoiusly recognizing and interpreting gestures that exhibit meaningful variation. With standard HMMs, such global variation confounds the recognition proc...

متن کامل

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

Monte Carlo Hidden Markov Models: Learning Non-Parametric Models of Partially Observable Stochastic Processes

We present a learning algorithm for non-parametric hidden Markov models with continuous state and observation spaces. All necessary probability densities are approximated using samples, along with density trees generated from such samples. A Monte Carlo version of Baum-Welch (EM) is employed to learn models from data. Regularization during learning is achieved using an exponential shrinking tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1999